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Cooperative Control Lab

• Faculty for Mechanical and Process Engineering, University of Applied Sciences Augsburg

• Objective: Development and application of algorithms in the field of decentralized multi-agent systems 

• Crazyflie as primary hardware demonstrator

• Getting started in spring 2019

• We are happy to publish/share our results on github, website will be launched soon 

Team members and projects

Klaus Kefferpütz

• Head of Cooperative Control Lab

• Professor for Measurement and  Control

• Current project: Crazyflie Navigation

Thomas Izycki

• B. Eng. in Engineering in Computer Sciences

• Master of Applied Research Study Program

• Current project: Cooperative Path Planning

Christos Zosimidis

• B. Eng. in Engineering in Computer Sciences

• Embedded Software Developer at Engineering 

Office for Thermoacoustic (IfTA) GmbH in 

Puchheim, Munich

• Current project: Decentralized communication

Simon Zittenzieher

• B. Eng. in Mechanical Engineering

• Master of Mechanical Engineering Study 

Program

• Current project: Exploration and Mapping
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Outline

• Introduction – Klaus

Part 1: Insights into current projects

• Cooperative Path Planning  - Thomas

• Decentralized communication strategies for the Crazyflies – Christos

• First steps in (distributed) exploration/mapping – Simon

5 min break

Part 2: Navigation Enhancement for the Crazyflie

• Alternate Navigation Algorithm - Klaus

Decentralized Navigation
Cooperative Path Planning

Exploration and Mapping

Crazyflie Navigation/Localization
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Motivation

• Maneuvering through complex environments with a team 

consisting of multiple agents

• Individual execution of the path planning task to obtain a 

decentralized system

Cooperative Path Planning: Requirements/Challenges

• Implementation of a CL-RRT-based [1] onboard real-time path 

planning algorithm for the Crazyflie 2.0/2.1/Bolt

• Realization of the Merit-based Token Passing Coordination 

Strategy [2]

• Preference for agents with prioritized tasks

[1] Y. Kuwata, J. Teo, S. Karaman, G. Fiore, E. Frazzoli, and J. How, “Motion planning in complex environments using closed-
loop prediction,” AIAA Guidance, Navigation, and Control Conference (GNC), 08 2008.
[2] V. Desaraju and J. How, “Decentralized path planning for multi-agent
teams with complex constraints,” Autonomous Robots, vol. 32, 05 2012.

Cooperative path planning with three agents in an experimental setup
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Pseudo-Decentralized Communication

• Agents need to have the ability to broadcast messages and to exchange data 

directly between each other

• Messages get routed through the ground station 

Interagent Communication for Path Planner Application

• Definition of a multi-agent packet

• Message types

• Register/Remove team members

• Add obstacles

• Broadcast path

• Broadcast bid

• Pass on the token

Destination ID

Sender ID

Payload

Message Type

Multi-Agent Packet

Pseudo-Decentralized Communication Framework
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Coordination procedure

• First Step:

• Agents plan their paths individually

• The bid represents the improvement of the 

path

• Agents with higher prioritized tasks can 

submit a higher bid

• Collecting the bids is done by the current 

token holder

• Second Step:

• The current token holder evaluates all 

submitted bids and passes the token to the 

winner

• After receiving the token, the new token 

holder starts to follow the new calculated 

path and broadcasts the path to all team 

members

• A new attempt to find a shorter path is 

started after the team constraints get 

updated

Agent 1 Agent 2 Agent 3 (current token holder)

Agent 1 Agent 2 (new token holder) Agent 3

Token

PathPath

Bid

Bid

Bid
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Rapidly-exploring Random Tree

• Starting from the current position, randomly generated nodes 

are added to the tree based on obstacle feasibility

• Each new node is connected to the nearest existing node by 

a straight line

• The tree grows until a connection with the goal position could 

be established 

Path Optimization

• Remove nodes if possible

• Move intermediate nodes closer

Continuous Planning

• The planning process is repeated

• As long as no shorter path has been found

• After every coordination iteration with the team while 

the goal has not been reached yet

First feasible path from current position to the goal

Shorter path after further planning iterations
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Communication

Interface

Commander

Module

Communication

and

Coordination

Path Planner
Path

Controller

- Status
- Path Information

- Control Commands
- Constraints

Final Path

CRTP Messages

Velocity Commands

Current Position

Integration into the Crazyflie Firmware:

• Path planner task runs with a low priority

• Communication and Coordination task runs 

with a medium/low priority

• Path controller gets invoked from the 

stabilizer task with a rate of 25 Hertz

Cooperative Path Planning in Action:

https://cloud.hs-augsburg.de/s/gkmyyCe4xJ2HyBK
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https://cloud.hs-augsburg.de/s/gkmyyCe4xJ2HyBK
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Decentralized Communication

Motivation

• Factory provided communication via Crazyradio PA is centralized, 

all communication is initiated and controlled by the Radio Dongle

• Decentralized methods for coordination and control require direct 

information exchange between the Crazyflie

Decentralized Communication: Requirements/Challenges

• Must allow for information exchange among the Crazyflies without 

involving the Crazyradio PA Dongle / Python ground station

• Communication with the Crazyradio PA Dongle / Python ground 

station should be possible but should not be a “Must”

• Operator Control

• Monitoring/Logging

Python ground-station/Crazyradio PA Dongle
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Python ground-station

Desired Decentralized Communication Network

Centralized Communication Framework



Evaluation of Communication Strategies

• Strategies relying on the detection of message collisions (e.g. CSMA) led to 

the Hidden-Node Problem [2] even for small numbers of Crazyflies

• Message collisions must be prevented

Token-Passing Strategy [1]

• All nodes are equal

• Ring network topology

• (Exaclty one) token circulating the network with high frequency 

• Only nodes / Crazyflies in the possession of the token are allowed to transmit 

data

• Characteristics: 

• Decentralized, no need for central node to handle communication

• Data collisions are impossible, only one node communicates at a time

• No Hidden-Node Problem

• Ideal for Swarm applications, as communication with each other is 

provided all the time

• Fulfills real-time conditions

• Network can be dynamically changed (e.g. auto-insert of nodes in the 

network / disconnect from the network)

Decentralized Communication
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Token circulating the ring-net

Crazyflie or Pyhton ground-
station/Crazyradio PA Dongle

[1] M. Ergen, Duke Lee, Raja Sengupta and P. Varaiya, "WTRP - wireless token ring protocol," in IEEE 

Transactions on Vehicular Technology, vol. 53, no. 6, pp. 1863-1881, Nov. 2004, doi: 10.1109/TVT.2004.836928.
[2] Jangkeun Jeong ; Hyuntai Kim ; Sangtae Lee ; Jitae Shin: An analysis of hidden node problem in IEEE 802.11 

multihop networks. (2010). – DOI https://ieeexplore.ieee.org/document/5573151



Implementation-Challenges

• Token-Handling: Token must never be lost or duplicated

• Solved employing timers and additional messages

• Data-Handling: Ensure successful data transmission/prevent 

duplications

• Solved employing acknowledgement frames/flags 

• Auto-insertions in the network (work in progress)

• periodically search for new nodes in the network

• Auto-disconnect (work in progress)

• Signal other nodes the disconnect

• Auto-throw from network if node fails to acknowledges the 

frames  

Integration in Crazyflie Platform

• Use existent Crazyflie Realtime Protocol (CRTP) [2]

• Change link layer of CRTP from Enhanced ShockBurst (ESB) to 

Token Passing protocol [3]

• Even compatibility to Crazyflie-Client

• But now with decentralized communication

Decentralized Communication
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[2] Bitcraze AB: Crazy Real Time Protocol. 2021 https://wiki.bitcraze.io/projects:crazyflie:firmware:comm_protocol

[3] Nordic Semiconductor: nRF51 Series Reference Manual. 2016. – 85–88 S.      

https://infocenter.nordicsemi.com/index.jsp?topic=%2Fcom.nordic.infocenter.sdk5.v11.0.0%2Fesb_users_guide.html 

Application/Ports

CRTP packet handling

CRTP Link (ESB)

Application/Ports

CRTP packet handling

Token Passing

Original CRTP application port still available (logging, 

console etc.)

https://wiki.bitcraze.io/projects:crazyflie:firmware:comm_protocol


Crazyflie 2.0/2.1/Bolt

• Modified nRF51 firmware

• Use Token Passing protocol instead of ESB

• Modified radio link layer

Decentralized Communication

Implementation details

Python Ground-station/Crazyflie Python API

• cflib: CRTP-Driver for nRF51 Developer Kit

• COM-port: UART with syslink protocol as employed on Crazyflie

• nRF51-DK: Replacement for Crazyradio PA radio dongle

• Communication with Crazyflie via radio 2.4 GHz

• Employing Token-Passing Protocol

19.10.2021 14

nRF51 Developer kit replacing 
Crazyradio PA Dongle

USB connection

Crazyflie Architecture borrowed from www.bitcraze.io

© Hochschule Augsburg, Prof. Dr.-Ing. Klaus Kefferpütz



Decentralized Communication

Outlook

• Currently developing additional features and improving the implementation

• Performance evaluation / comparison with a centralized communication mimicking decentralized 

communication

• Integration in cooperative path planning application replacing pseudo-decentral communication

• Remark: Already successfully demonstrated with pre-version of cooperative path planner

• We are happy to share the source code (Open Source with an MIT license)

19.10.2021 15© Hochschule Augsburg, Prof. Dr.-Ing. Klaus Kefferpütz



(Decentralized) Exploration/Mapping



Introduction to Autonomous Exploration and Mapping
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Autonomous Exploration and Mapping

• Cooperative path planning relies on a map of the environment which 

has to be provided manually

• Long-Term objectives: 

• Explore the environment autonomously with a Crazyflie team 

equipped with sensor decks (Multi-Ranger)

• Form a common map based on the collected data which is 

shared through the network

• Overcome restrictions due to resource constrained 

STM32F405 MCU making use of the AI-deck  

First step:

Autonomous Exploration and Mapping with a single Crazyflie

AI-DeckMR-Deck

Lighthouse Deck

LPS Deck

or

Cooperative path planning with three agents that know the position 
of the obstacles they are avoiding 



Introduction to Autonomous Exploration and Mapping
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Autonomous Exploration and Mapping with a single Crazyflie

• Goal: Enable drone to autonomously explore and gather information 

about an unknown environment and extract obstacle coordinates

• Exploration/Mapping algorithms

• State-of-the-art SLAM methods not applicable due to low 

computational resources

• Swarm Gradient Bug Algorithm (SGBA) already proved to be 

suited for exploration in [1], however, no map was created

• To benefit from the AI-Deck and its toolchain, we decided to 

employ machine learning methods to extract obstacle data from 

MR point cloud measurements (map data compression)

• Approach:

• Employ Swarm Gradient Bug Algorithm (SGBA) for exploration

• Communicate MR-measurements and navigation data to a PC to 

register point-cloud data in a global map 

• Employ a machine learning algorithm to extract obstacle 

information

• Reduction of complexity by assuming rectangular obstacles in 

rectangular shape

Exploration algorithm

Distance sensors 

Positioning system

Communication (to external 

computation unit)

[1] McGuire, K. N. ; De Wagter, C. ; Tuyls, K. ; Kappen, H. J. ; Croon, G. C. H. E.: Minimal navigation solution for a swarm of tiny flying robots 

to explore an unknown environment. In: Science Robotics 4 (2019), Nr. 35. https://robotics.sciencemag.org/content/4/35/eaaw9710.



Hardware and Architecture

Lighthouse Positioning System

• Lighthouse Base-Station

• Lighthouse Deck

Loco Position System

• Used for comparison, judge influence 
of navigation quality on map 

Multi-Ranger Deck

Laser Distance Sensor

Hardware and Workflow
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Crazyflie 2.1

• Bitcraze Firmware

• Modified wall-following algorithm [2] 
based on SGBA [1] Crazyradio

Navigation

Data-Fusion

Lighthouse
(Sweep Angle 
Measurements)

distances 
(front, back, 
left, 
right, down)

Modified wall 

following algorithm position,
attitudes

Registration of sensor data in global system
→ Machine learning application computes

obstacle information

[Alternative:
LPS & Flow Deck]

[1] Bitcraze crazyflie-firmware Github: https://github.com/bitcraze/crazyflie-firmware/tree/master/examples/demos/app_wall_following_demo/src

[2] McGuire, K. N. ; De Wagter, C. ; Tuyls, K. ; Kappen, H. J. ; Croon, G. C. H. E.: Minimal navigation solution for a swarm of tiny flying robots 

to explore an unknown environment. In: Science Robotics 4 (2019), Nr. 35. https://robotics.sciencemag.org/content/4/35/eaaw9710.

distances (front, back, left, right, down)
Motion 

commands

Computer & 

Crazyradio

Dongle

https://github.com/bitcraze/crazyflie-firmware/tree/master/examples/demos/app_wall_following_demo/src


Obstacle detection with CNNs
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[3] Thakur, A.: Object Localization with Keras and WandB. https://medium.com/analytics-
vidhya/object-localization-with-keras-2f272f79e03c/

AI Deck

Convolutional Neural Networks (CNN)

• Objective: Extract obstacle parameter (position, length, width) 

from point-cloud measurements

• Approach inspired by [3]

• Long term objective: Implement approach on AI-Deck for 

online processing
Python Implementation on ground-station 

Long term objective

Network architecture



Obstacle detection with CNNs
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Convolutional Neural Networks – Application for measuring points?

• CNN outputs only single classification / localization-output for every 

prediction of the artificial network

• Separation of data in quadratic input-images

• Step-by-step prediction and storage of classification and localization 

output

• Combination of multiple obstacles

Training and Artificial training data

• CNN accepts only one predefined input-format (here: 100x100)

• Training with artificially generated measurement data due to lack of real 

data (50’000 images for training with ground truth data)

Obstacle position

Multi Ranger data
(2D)

100 col.

1
0

0
 r

o
w

Ground truth
(x1, y1, x2, y2)

Added artificial
noise



Testing of exploration algorithm
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Laboratory set up

• 4 m x 5 m indoor set up with walls and additional obstacles

• Positioning with Lighthouse System

(2x Lighthouse base-stations)

Results

• Time of flight: ~ 118 seconds

• All obstacles covered

• Some outliers, mostly at sharp edges

Video Point Cloud 

https://cloud.hs-augsburg.de/s/trfesxykBFNij5J

https://cloud.hs-augsburg.de/s/trfesxykBFNij5J


Interpretation and Outlook
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Interpretation of results

• Sufficient recording of environment 

• But: weak coverage of corners (→ adjust / slow down yaw-motion)

• Outliers (on sharp edges) lead to enlarged output obstacles 

Outlook

• Optimization of exploration algorithm 

• Improve reliability / safety

• Bias search direction towards unexplored areas and/or regions, 

where obstacle identification is uncertain

• Optimization of obstacle detection 

• Extend approach to decentralized swarming

• Implement approach on the AI-Deck for onboard processing



Part 2

Alternate Navigation Algorithm – Error-State UKF



Alternate Navigation Algorithm
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Crazyflie Positioning / Navigation

• Accurate positioning is an important requirement in most multi-agent scenarios

• Indoor positioning at the Cooperative Control Lab

• Lighthouse System (LH): Sweep Angles of IR-lightplanes emitted of 2 spatially separated base-stations (accuracy 2-4 cm), requires 

direct line-of-sight contact to the base-stations

• Loco-Positioning System (LPS): Time difference of arrival w.r.t. 8 spatially separated anchors (accuracy ~15 cm)

• Flow-Deck: Relative positioning based on optical flow and time-of-flight measurements (primarily used as additional aiding sensor 

in LPS environments)

Position error when relying on 

LPS and Flow-deck v2

Our aim is improving navigation accuracy based on LPS and extending it towards cooperative navigation



Alternate Navigation Algorithm
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Error-State Navigation Filter [3]

• Strapdown Algorithm [2]: Time integration of IMU measurements 

combined with

• Extended Kalman Filter (EKF) estimates the error-state based on 

available aiding sensors (LPS, Flow Deck v2,….)

• Strapdown solution corrected with each measurement update

• Error-state is set to zero after correction

• No wind-free assumptions, no drone specific parameters aside sensor 

covariances

Extended Kalman-Filter (EKF)

• Aim is estimating the state and covariance of a nonlinear, stochastic 

system

with 𝜼𝑘~𝑁(𝟎,𝑸𝒌), 𝜻𝑘~𝑁(𝟎, 𝑹𝒌)

• Nonlinearities are approximated, computing Jacobians in the 

prediction and measurement update steps

Strapdown navigation, e.g.  [2]

[1] M.W. Mueller, M. Hamer; R. D’Andrea: Fusing ultra-wideband range measurements with accelerometers and rate 

gyroscopes for quadrocopter state estimation, IEEE international Conference on Robotics and Automation, ICRA 2015

[2] D.H. Titterton, J.L. Weston, “Strapdown Inertial Navigation Technology - Second Edition”, Institution of Electrical 

Engineers, 2004

[3] Sola - Quaternion kinematics for the error-state Kalman Filter, 

http://www.iri.upc.edu/people/jsola/JoanSola/objectes/notes/kinematics.pdf, October 2017

Kalman-Filter: Computational Steps



Measurement Equations 

• LPS / UWB (we solely consider TDoA mode 3)

• Flow-Deck time-of-flight measurement 

• Flow-Deck optical flow measurement

Alternate Navigation Algorithm
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Extended Kalman-Filter: Measurement Update Step

• Compute Jacobian of nonlinear measurement equation

• Compute Kalman Gain

• Update state estimate:

𝑃𝑥𝑦 𝑃𝑦𝑦
−1



Alternate Navigation Algorithm
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[3] Sola - Quaternion kinematics for the error-state Kalman Filter, 

http://www.iri.upc.edu/people/jsola/JoanSola/objectes/notes/kinematics.pdf, October 2017

[4] S.J. Julier; J.K. Uhlmann, “A New Extension of the Kalman Filter to Nonlinear Systems“, Signal Processing, 

Sensor Fusion, and Target Recognition VI, Aerosense 97, Orlando, USA, 1997

Unscented Kalman-Filter (UKF):

• Aims on increasing the approximation quality of the 

covariances for state estimate and measurement 

• Applies the unscented transformation based on so-called 

sigma-points to approximate the covariance instead of 

Jacobian computations

• The computational complexity is similar compared to the EKF

Fusing Flow-Deck measurements

• Fusing optical flow and height measurements improve the 

navigation accuracy 

• However, flying over obstacles, other Crazyflies, etc. is 

causing undesired “jumps”

• We implemented a straightforward outlier detection based 

on the measurement covariance to prevent unlikely 

measurements from being processed by the UKF

We combined the error-state navigation approach of 

[3] with the Unscented Kalman Filter [4]

Approximation abilities of the extended vs. the unscented Kalman-Filter



Alternate Navigation Algorithm
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Accessing the LPS navigation quality

• Ground truth data is mandatory for parameter tuning and evaluation

• We employed the Lighthouse system with crossing beam method [5] 

• Crazyflie 2.1 equipped with

• Modified LPS deck (switched serial port)

• Lighthouse Deck (not fused in the UKF)

• Lighthouse and LPS coordinate frames have to be aligned in a post-

processing step before numerical evaluation (approach stated in [6])   

Installation of LPS Positioning system in the lab

Improvised “Corona-Lab”

Crazyflie 2.1: Configuration with Lighthouse Deck 

and (modified) LPS deck 

[5] A. Taffanel; B. Rousselot; J. Danielsson; K. McGuire; K. Richardsson; M. Eliasson; T. Antonsson; W. Hönig, 

“Lighthouse Positioning System: Dataset, Accuracy, and Precision for UAV Research“, ICRA Workshop on Robot 

Swarms in the Real World, Arxiv 2021

[6] K. S. Arun; T. S. Huang; S. D. Blostein, “Least-Squares Fitting of Two 3-D Point Sets“, IEEE Transactions on 

Pattern Analysis and Machine Intelligence Vol. 9, No.5, 1987

Modified

LPS deck 

Lighthouse Deck



Alternate Navigation Algorithm
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Experimental Results 

• Pure LPS based navigation

• Navigation error reduced by ~ 20% w.r.t. standard EKF

• Visually, also attitude stability is enhanced

• A preflight height offset of ~30 cm is observed for 

standard EKF and error-state UKF

• Fusing LPS and Flow-Deck v2 measurements

• Reduces the height estimation errors significantly

• Outlier rejection successfully prevents height 

distortions when passing over obstacles

Evaluate yourselves: 

• Error-state UKF has been submitted to ICRA 2022 

• Firmware has been published on github [7]

• Please note, that default navigation is still standard 

EKF, you have to switch to error-state UKF prior to 

take-off

• We also provided a measurement update function for 

Lighthouse sweep angle measurements, however 

• we do not have a Mocap system so there is no 

quantitative evaluation for Lighthouse sweep angle 

measurements

Trajectory plots for standard EKF and 
error-state UKF when relying on LPS

Trajectory plots for error-state UKF for pure 
LPS and LPS plus optical flow/time-of-flight 
measurements

Video Error-state UKF vs. Standard EKF:

https://cloud.hs-augsburg.de/s/AFsQRFPP6faY35x

[7] Error-State UKF on Github (out-of-tree version):
https://github.com/HSaugsburgBitcraze/estimator_error_kalman

https://cloud.hs-augsburg.de/s/AFsQRFPP6faY35x


Alternate Navigation Algorithm
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Potential Pitfalls 

• Lighthouse System with crossing beam method

• Prone to any reflective material, cover all windows 

• Flow-deck v2 primarily when applied with standard EKF 

• Tends to diverge if clearance below the Flow deck is chosen 

too low, 

• Also happens with 2 decks below the Crazyflie (modified LPS 

and Flow Deck) or 

• when using long deck connectors
Prototype of Bolt based customized drone 

Long deck connectors

Standard deck connectors

Windows causing reflections distorting Lighthouse crossing beam method 



Alternate Navigation Algorithm
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Cooperative Navigation

• Limited amount of slots for sensor decks on a Crazyflie, so data-fusion 

on each Crazyflie limits the abilities of the overall multi agent team

• LPS deck allows measurements of ranges in between Crazyflies, no 

additional sensor-deck is necessary, so 

• First steps towards “TDoA hybrid mode” already done by 

Bitcraze, so

• Crazyflies with additional Lighthouse decks and/or

• Crazyflies fusing LPS and Flow-Deck v2 measurements

could serve as mobile anchors for pure LPS-Crazyflies

Challenges: 

• Methodological 

• Due to inter-Crazyflie range measurements, estimated 

navigational states of different Crazyflies become correlated

• Cross-correlations must be accounted for to prevent consistency 

issues (i.e. applying covariance intersection [8], [9])

• Implementation 

• Extend LPS communications to distribute the position estimate 

and covariance information among Crazyflies

• Limited computational resources of the STM32F405 MCU

Concept of Cooperative Navigation

LH & LPS-Crazyflies

Access to Lighthouse 

measurements

LPS-Crazyflie,

Only UWB 

measurements

TWR ranging

Passively listening,

TDoA measurements

[8] S. J. Julier; J. K. Uhlmann: A Non-divergent Estimation Algorithm in the Presence of Unknown

Correlations, Proc. Of the American Control Conference, June 1997

[9] N. Noack; J. Sijs; U. D. Hanebeck: Inverse Covariance Intersection: New Insights and Properties, 

Proc. of the Conference on Information Fusion, 2017
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Birthday to the whole Bitcraze Team!

Thank you and


